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ABSTRACT
BoostMap is a recently proposed method for efficient ap-
proximate nearest neighbor retrieval in arbitrary non- Eu-
clidean spaces with computationally expensive and possibly
non-metric distance measures. Database and query objects
are embedded into a Euclidean space, in which similarities
can be rapidly measured using a weighted Manhattan dis-
tance. The key idea is formulating embedding construc-
tion as a machine learning task, where AdaBoost is used
to combine simple, 1D embeddings into a multidimensional
embedding that preserves a large amount of the proximity
structure of the original space. This paper demonstrates
that, using the machine learning formulation of BoostMap,
we can optimize embeddings for indexing and classification,
in ways that are not possible with existing alternatives for
constructive embeddings, and without additional costs in re-
trieval time. First, we show how to construct embeddings
that are query-sensitive, in the sense that they yield a differ-
ent distance measure for different queries, so as to improve
nearest neighbor retrieval accuracy for each query. Second,
we show how to optimize embeddings for nearest neighbor
classification tasks, by tuning them to approximate a param-
eter space distance measure, instead of the original feature-
based distance measure.

1. INTRODUCTION
Many important database applications require represent-

ing and indexing data that belong to a non-Euclidean, and
often non-metric space. Some examples are proteins and
DNA in biology, time series data in various fields, and edge
images in computer vision. Indexing such data can be chal-
lenging, because the underlying distance measures can take
time superlinear to the length of the data, and also because
many common tree-based and hash-based indexing methods
typically work in a Euclidean space, or at least a so-called
”coordinate-space”, where each object is represented as a
feature vector of fixed dimensions.

Euclidean embeddings (like Bourgain embeddings [17] and
FastMap [10]) provide an alternative for indexing non-Euclidean

1This research was funded in part by the U.S. National
Science Foundation, under grants IIS-0208876, IIS-0308213,
and IIS-0329009, and the U.S. Office of Naval Research, un-
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spaces. Using embeddings, we associate each object with a
Euclidean vector, so that distances between objects are re-
lated to Euclidean distances between the mappings of those
objects. Indexing can then be done in the Euclidean space,
and a refinement of the retrieved results can then be per-
formed in the original space. Euclidean embeddings can
significantly improve retrieval time in domains where eval-
uating the distance measure in the original space is compu-
tationally expensive.

BoostMap [2] is a recently introduced method for embed-
ding arbitrary (metric or non-metric) spaces into Euclidean
spaces. The main difference between BoostMap and other
existing methods is that BoostMap treats embeddings as
classifiers, and constructs them using machine learning. In
particular, given three objects a, b and c in the original space
X, an embedding F can be used to make an educated guess
as to whether a is closer to b or to c. The guess is simply
that a is closer to b than it is to c if F (a) is closer to F (b)
than it is to F (c). If using some embedding F we can make
the right guess for all triples, then that embedding perfectly
preserves k-nearest-neighbor structure, for any value of k.
Overall, we want to construct embeddings that make wrong
guesses on as few triples as possible. The classification er-
ror of an embedding is the fraction of triples on which the
embedding makes a wrong guess.

In this paper, we describe three extensions of BoostMap,
that can be used to improve the quality of the embedding,
when the application is approximate nearest neighbor re-
trieval or efficient nearest neighbor classification:

• We show how to construct query-sensitive embeddings,
in which the weighted L1 distance used in the Eu-
clidean space depends on the query. In a high-dimensional
embedding, using a query-sensitive distance measure
provides an elegant way to capture the fact that dif-
ferent coordinates are important in different regions of
the space.

• In cases where the ultimate goal is classification of the
query based on its k nearest neighbors, we show how
to create embeddings that are explicitly optimized for
classification accuracy, as opposed to being optimized
for preserving distances or nearest neighbors.

• We describe an improved method for selecting the train-
ing set used by BoostMap. In the original formulation,
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the training set was chosen at random.

Database objects are embedded offline. Given a query
object q, its embedding F (q) is computed efficiently online,
by measuring distances between q and a small subset of
database objects. In the case of nearest-neighbor queries,
the most similar matches obtained using the embedding can
be reranked using the original distance measure, to improve
accuracy, in a filter-and-refine framework [12]. Overall, the
original distance measure is applied only between the query
and a small number of database objects.

We also describe some preliminary experiments, in which
we compare our method to FastMap [10], using as a dataset
the MNIST database of handwritten digits [16], and using
the chamfer distance as the distance measure in the origi-
nal space. Our original BoostMap formulation leads to sig-
nicantly more efficient retrieval than FastMap. The three
extensions introduced in this paper, i.e. query-sensitive em-
beddings, optimization of classification accuracy, and better
choice of training set, lead to additional gains in efficiency
and classification accuracy. We are working on evaluating
BoostMap on more datasets, with different similarity mea-
sure, in order to get a clearer picture of its performance vs.
other existing embedding methods.

2. RELATED WORK
Various methods have been employed for similarity in-

dexing in multi-dimensional datasets, including hashing and
tree structures [27]. However, the performance of such meth-
ods degrades in high dimensions. This phenomenon is one of
the many aspects of the “curse of dimensionality” problem.
Another problem with tree-based methods is that they typ-
ically rely on Euclidean or metric properties, and cannot be
applied to arbitrary non-metric spaces. Approximate near-
est neighbor methods have been proposed in [14, 22] and
scale better with the number of dimensions. However, those
methods are available only for specific sets of metrics, and
they are not applicable to arbitrary distance measures.

In domains where the distance measure is computationally
expensive, significant computational savings can be obtained
by constructing a distance-approximating embedding, which
maps objects into another space with a more efficient dis-
tance measure. A number of methods have been proposed
for embedding arbitrary metric spaces into a Euclidean or
pseudo-Euclidean space [7, 10, 13, 20, 23, 26, 28]. Some
of these methods, in particular MDS [28], Bourgain embed-
dings [7, 12], LLE [20] and Isomap [23] are not applica-
ble for online similarity retrieval, because they still need to
evaluate exact distances between the query and most or all
database objects. Online queries can be handled by Lip-
schitz embeddings [12], FastMap [10], MetricMap [26] and
SparseMap [13], which can readily compute the embedding
of the query, measuring only a small number of exact dis-
tances in the process. These four methods are the most
related to our approach.

Various database systems have made use of Lipschitz em-
beddings [4, 8, 9] and FastMap [15, 19], to map objects into
a low-dimensional Euclidean space that is more manageable
for tasks like online retrieval, data visualization, or classifier
training. The goal of our method is to improve embedding
accuracy in such applications.

3. PROBLEM DEFINITION

Let X be a set of objects, and DX(x1, x2) be a distance
measure between objects x1, x2 ∈ X. DX can be metric
or non-metric. A Euclidean embedding F : X → R

d is a
function that maps objects from X into the d-dimensional
Euclidean space Rd , where distance is measured using a mea-
sure DRd. DRd is typically an Lp or weighted Lp norm.
Given X and DX , our goal is to construct an embedding F
that, given a query object q, can provide accurate approxi-
mate similarity rankings of database objects, i.e. rankings of
database objects in order of decreasing similarity (increasing
distance) to the query.

3.1 Variations of the Problem
Depending on the domain and application, there are dif-

ferent variations of the general goal, which is to provide
accurate approximate similarity rankings . In this paper we
will explicitly address three different versions of this goal:

• Version 1: We want to rank all database objects in
approximate (but as accurate as possible) order of sim-
ilarity to the query object. In this variant, we care
not only about identifying the nearest neighbors of the
query, but also the farthest neighbors, and in general
we want to get an approximate rank for each database
object.

• Version 2: We want to approximately (but as accu-
rately as possible) identify the k nearest neighbors of
the query object, where the value of k is much smaller
than the size of the database.

• Version 3: We want to classify the query object us-
ing k-nearest neighbor classification, and we want to
construct an embedding and a weighted L1 distance
that are optimized for classification accuracy.

BoostMap can be used to address all three versions. In the
BoostMap framework, every embedding F defines a classifier
F̃ which, given triples of objects (q, x1, x2) of X, provides
an estimate of whether q is more similar to x1 or to x2.
The way we will customize BoostMap to address each of the
three versions is by choosing an appropriate training set of
triples of objects, and by using an appropriate definiition of
what is “similar”. After we make these choices, we use the
same algorithm in all three cases.

3.2 Formal Definitions
In order to specify the quantity that the BoostMap algo-

rithm tries to optimize, we introduce in this section a quanti-
tative measure, that can be used to evaluate how “good” an
embedding is in providing approximate similarity rankings.

Let (q, x1, x2) be a triple of objects in X. Let D be a
distance measure on X. For the first two variations of our
problem statement, D = DX , but for the third variation
we will use an alternative distance measure, that depends
on class labels (Section 9). We define the proximity or-
der PX(q, x1, x2) to be a function that outputs whether q
is closer to x1 or to x2:

PX(q, x1, x2) =

8<
:

1 if D(q, x1) < D(q, x2) .
0 if D(q, x1) = D(q, x2) .

−1 if D(q, x1) > D(q, x2) .
(1)

If F maps space X into Rd (with associated distance mea-
sure DRd), then F can be used to define a proximity classi-
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fier F̃ that estimates PX using PRd, i.e. the proximity order
function of Rd with distance DRd:

F̃ (q, x1, x2) = DRd(F (q), F (x2)) −DRd(F (q), F (x1)) . (2)

If we define sign(x) to be 1 for x > 0, 0 for x = 0, and −1 for

x < 0, then sign(F̃ (q, x1, x2)) is an estimate of PX(q, x1, x2).

We define the classification error G(F̃ , q, x1, x2) of apply-

ing F̃ on a particular triple (q, x1, x2) as:

G(F̃ , q, x1, x2) =
|PX(q, x1, x2) − sign(F̃ (q, x1, x2))|

2
. (3)

Finally, the overall classification error G(F̃ ) is defined to

be the expected value of G(F̃ , q, x1, x2), over all triples of
objects in X:

G(F̃ ) =

P
(q,x1,x2)∈X3 G(F̃ , q, x1, x2)

|X|3 . (4)

If G(F̃ ) = 0 then we consider that F perfectly preserves the
proximity structure of X. In that case, if x is the k-nearest
neighbor of q in X, F (x) is the k-nearest neighbor of F (q)
in F (X), for any value of k.

Overall, the classification error G(F̃ ) is a quantitative
measure of how well F preserves the proximity structure
of X, and how closely the approximate similarity rankings
obtained in F (X) will resemble the exact similarity rank-
ings obtained in X. Using the definitions in this section,
our problem definition is very simple: we want to construct
an embedding F : X → R

d in a way that minimizes G(F̃ ).
We will address this problem as a problem of combining

classifiers. In Sec. 4 we will identify a family of simple,
1D embeddings. Each such embedding F ′ is expected to
preserve at least a small amount of the proximity structure
of X, meaning that G(F̃ ′) is expected to be less than 0.5,
which would be the error rate of a random classifier. Then,
in Sec. 7 we will apply AdaBoost to combine many 1D
embeddings into a high-dimensional embedding F with low
error rate G(F̃ ).

4. BACKGROUND ON EMBEDDINGS
In this section we describe some existing methods for con-

structing Euclidean embeddings. We briefly go over Lips-
chitz embeddings [12], Bourgain embeddings [7, 12], FastMap
[10] and MetricMap [26]. All these methods, with the ex-
ception of Bourgain embeddings, can be used for efficient
approximate nearest neighbor retrieval. Although Bour-
gain embeddings require too many distance computations
in the original space X in order to embed the query, there
is a heuristic approximation of Bourgain embeddings called
SparseMap [13] that can also be used for efficient retrieval.

4.1 Lipschitz Embeddings
We can extend DX to define the distance between ele-

ments of X and subsets of X. Let x ∈ X and R ⊂ X.
Then,

DX(x,R) = min
r∈R

DX(x, r) . (5)

Given a subset R ⊂ X, a simple one-dimensional Eu-
clidean embedding FR can be defined as follows:

FR(x) = DX (x,R) . (6)

R
2 (original space) R (target space)

Figure 1: An embedding F r of five 2D points (shown on

the left) into the real line (shown on the right), using r as

the reference object. The target of each 2D point on the

line is labeled with the same letter as the 2D point. The

classifier F̃r (Equation 2) classifies correctly 46 out of the

60 triples we can form from these five objects (assuming

no object occurs twice in a triple). Examples of misclas-

sified triples are: (b, a, c), (c, b, d), (d, b, r). For example, b is

closer to a than it is to c, but F r(b) is closer to F r(c) than

it is to F r(a).

The set R that is used to define FR is called a reference set.
In many cases R can consist of a single object r, which is
typically called a reference object or a vantage object [12]. In
that case, we denote the embedding as F r.

If DX obeys the triangle inequality, FR intuitively maps
nearby points in X to nearby points on the real line R. In
many cases DX may violate the triangle inequality for some
triples of objects (an example is the chamfer distance [5]),
but FR may still map nearby points in X to nearby points in
R, at least most of the time [4]. On the other hand, distant
objects may also map to nearby points (Figure 1).

In order to make it less likely for distant objects to map
to nearby points, we can define a multidimensional embed-
ding F : X → R

k , by choosing k different reference sets
R1, ..., Rk:

F (x) = (FR1(x), ..., FRk(x)) . (7)

These embeddings are called Lipschitz embeddings [7, 13,
12]. Bourgain embeddings [7, 12] are a special type of Lip-
schitz embeddings. For a finite space X containing |X| ob-
jects, we choose 	log |X|
2 reference sets. In particular,
for each i = 1, ..., 	log |X|
 we choose 	log|X|
 reference
sets, each with 2i elements. The elements of each set are
picked randomly. Bourgain embeddings are optimal in some
sense: using a measure of embedding quality called distor-
tion, Bourgain embeddings achieve O(|X|) distortion, and
there exist spaces X for which no better distortion can be
achieved. More details can be found in [12, 18].

A weakness of Bourgain embeddings is that, in order to
compute the embedding of an object, we have to compute
its distances DX to almost all objects in X, and in database
applications computing those distances is exactly what we
want to avoid. SparseMap [13] is a heuristic simplification of
Bourgain embeddings, in which the embedding of an object
can be computed by measuring only O(log2 n) distances.

Another way to speed up retrieval using a Bourgain em-
bedding is to define this embedding using a relatively small
random subset X′ ⊂ X. That is, we choose 	log |X′|
2 ref-
erence sets, which are subsets of X′. Then, to embed any
object of X we only need to compute its distances to all
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Figure 2: Computing F x1,x2(x), as defined in Equation

8: we construct a triangle ABC so that the sides AB,

AC, BC have lengths DX(x, x1),DX(x, x2) and DX(x1, x2)

respectively. We draw from A a line perpendicular to

BC, and D is the intersection of that line with BC. The

length of the line segment BD is equal to F x1,x2(x).

objects of X′. We used this method to produce Bourgain
embeddings of different dimensions in the experiments we
describe in [2]. We should note that, if we use this method,
the optimality of the embedding only holds for objects in
X ′, and there is no guarantee about the distortion attained
for objects of the larger set X. We should also note that, in
general, defining an embedding using a smaller set X′ can in
principle also be applied to Isomap [23], LLE [20] and even
MDS [28], so that it takes less time to embed new objects.

The theoretical optimality of Bourgain embeddings with
respect to distortion does not mean that Bourgain embed-
dings actually outperform other methods in practice. Bour-
gain embeddings have a worst-case bound on distortion, but
that bound is very loose, and in actual applications the qual-
ity of embeddings is often much better, both for Bourgain
embeddings and for embeddings produced using other meth-
ods. In the experiments described in [2], BoostMap outper-
formed Bourgain embeddings significantly.

A simple and attractive alternative to Bourgain embed-
dings is to simply use Lipschitz embeddings in which all
reference sets are singleton. In that case, if we have a d-
dimensional embedding, in order to compute the embedding
of a previously unseen object we only need to compute its
distance to d reference objects.

4.2 FastMap and MetricMap
A family of simple, one-dimensional embeddings, is pro-

posed in [10] and used as building blocks for FastMap. The
idea is to choose two objects x1, x2 ∈ X, called, pivot ob-
jects, and then, given an arbitrary x ∈ X, define the em-
bedding F x1,x2 of x to be the projection of x onto the “line”
x1x2. As illustrated in Figure 2, the projection can be de-
fined by treating the distances between x, x1, and x2 as
specifying the sides of a triangle in R2:

F x1,x2(x) =
DX (x, x1)2 + DX(x1, x2)2 −DX (x, x2)2

2DX(x1, x2)
. (8)

If X is Euclidean, then Fx1,x2 will map nearby points in
X to nearby points in R. In practice, even if X is non-
Euclidean, F (x1, x2) often still preserves some of the prox-
imity structure of X.

FastMap [10] uses multiple pairs of pivot objects to project
a finite set X into R

k using only O(kn) evaluations of DX .
The first pair of pivot objects (x1, x2) is chosen using a
heuristic that tends to pick points that are far from each

other. Then, the rest of the distances between objects in X
are “updated”, so that they correspond to projections into
the “hyperplane” perpendicular to the line x1x2. Those pro-
jections are computed again by treating distances between
objects in X as Euclidean distances in some Rm . After dis-
tances are updated, FastMap is recursively applied again to
choose a next pair of pivot objects and apply another round
of distance updates. Although FastMap treats X as a Eu-
clidean space, the resulting embeddings can be useful even
when X is non-Euclidean, or even non-metric. We have seen
that in our own experiments (Section 11).

MetricMap [26] is an extension of FastMap, that maps X
into a a pseudo-Euclidean space. The experiments in [26] re-
port that MetricMap tends to do better than FastMap when
X is non-Euclidean. So far we have no conclusive experimen-
tal comparisons between MetricMap and our method, partly
because some details of the MetricMap algorithm have not
been fully specified (as pointed out in [12]), and therefore we
could not be sure how close our MetricMap implementation
was to the implementation evaluated in [26].

4.3 Embedding Application: Filter-and-refine
Retrieval

In applications where we are interested in retrieving the
k nearest neighbors or k correct matches for a query object
q, a d-dimensional Euclidean embedding F can be used in a
filter-and-refine framework [12], as follows:

• Offline preprocessing step: compute and store vector
F (x) for every database object x.

• Filter step: given a query object q, compute F (q), and
find the database objects whose vectors are the p most
similar vectors to F (q).

• Refine step: sort those p candidates by evaluating the
exact distance DX between q and each candidate.

The assumption is that distance measure DX is compu-
tationally expensive and evaluating distances in Euclidean
space is much faster. The filter step discards most database
objects by comparing Euclidean vectors. The refine step ap-
plies DX only to the top p candidates. This is much more
efficient than brute-force retrieval, in which we compute DX

between q and the entire database.
To optimize filter-and-refine retrieval, we have to choose

p, and often we also need to choose d, which is the dimen-
sionality of the embedding. As p increases, we are more
likely to get the true k nearest neighbors in the top p candi-
dates found at the filter step, but we also need to evaluate
more distances DX at the refine step. Overall, we trade
accuracy for efficiency. Similarly, as d increases, comparing
Euclidean vectors becomes more expensive, but we may also
get more accurate results in the filter step, and we may be
able to decrease p. The best choice of p and d, will depend
on domain-specific parameters like k, the time it takes to
compute the distance DX , the time it takes to compare d-
dimensional vectors, and the desired retrieval accuracy (i.e.
how often we are willing to miss some of the true k nearest
neighbors).

5. MOTIVATION FOR BOOSTMAP
Equations 6 and 8 define a family of one-dimensional em-

beddings. Given a space of objects X, each object r ∈ X
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can define a 1D embedding, using Equation 6 with R = {r}.
Each pair of objects can also define a 1D embedding, using
Equation 8. Therefore, given n objects of X, the number
of 1D embeddings we can construct using those objects is
O(n2).

Intuitively, we expect such 1D embeddings to map nearby
objects to nearby points on the line, but at the same time
they will frequently map pairs of distant objects into pairs
of nearby points. In order to make it more likely for dis-
tant objects to map to distant Euclidean points, we need
to construct high-dimensional embeddings. Both Lipschitz
embeddings and FastMap are methods for constructing a
single, high-dimensional embedding, using simple 1D em-
beddings as a building block.

In Lipschitz embeddings, we need to choose objects for
each reference set. Those objects can be chosen at ran-
dom, or using some geometric heuristics, like picking objects
so that they are far from each other [12], or picking refer-
ence objects so as to minimize stress or distortion [3, 13].
In FastMap, we choose pivot pairs using heuristics inspired
from Euclidean geometry.

Compared to Lipschitz embeddings and FastMap, Boost-
Map has two important differences:

• The algorithm produces an embedding explicitly op-
timized for approximating rank information, in the
form of approximating the proximity order of triples.
This is in contrast to FastMap and Bourgain embed-
dings, where no quantity is explicitly optimized, and
Lipschitz embedding variations that minimize stress
or distortion, since optimizing those quantities is not
equivalent to directly optimizing for ranking accuracy.

• The optimization method that is used is AdaBoost.
The main advantages of Adaboost are its efficiency,
and its good generalization properties (validated both
in theory and in practice), which make AdaBoost sig-
nificantly resistant to overfitting [21]. Previous ap-
proaches [3, 13] have used simple greedy optimization,
which is not as powerful.

In short, BoostMap optimizes what we really want to op-
timize, and it uses a very powerful optimization method.

6. OVERVIEW OF BOOSTMAP
At a high level, the main points in our formulation are the

following:

1. We start with a large family of 1D embeddings. As
described in previous sections, this large family can be
obtained by defining 1D embeddings based on refer-
ence objects and pairs of pivot objects.

2. We convert each 1D embedding into a binary classifier,
using Equation 2. These classifiers operate on triples of
objects, and they are expected to be pretty inaccurate,
but still better than a random classifier (which would
have a 50% error rate).

3. We run AdaBoost to combine many classifiers into a
single classifier H, which we expect to be significantly
more accurate than the simple classifiers associated
with 1D embeddings.

4. We use H to define a d-dimensional embedding Fout,
and a weighted L1 distance measure DRd. It is shown

Given: (o1, y1), . . . , (ot, yt); oi ∈ G, yi ∈ {−1, 1}.
Initialize wi,1 = 1

t
, for i = 1, . . . , t.

For j = 1, . . . , J :

1. Train weak learner using training weights wi,j .

2. Get weak classifier hj : X → R.

3. Choose αj ∈ R.

4. Set training weights wi,j+1 for the next round as fol-
lows:

wi,j+1 =
wi,j exp(−αjyihj(xi))

zj
. (9)

where zj is a normalization factor (chosen so thatPt
i=1 wi,j+1 = 1).

Output the final classifier:

H(x) = sign

 
JX

j=1

αjhj(x)

!
. (10)

Figure 3: The AdaBoost algorithm. This descrip-
tion is largely copied from [21].

that H is equivalent to the combination of Fout and
DRd: if, for three objects q, a, b ∈ X, H predicts that
q is closer to a than it is to b, then, under distance
measure DRd, Fout(q) is closer to Fout(a) than it is to
Fout(b).

The key idea is establishing a duality between embed-
dings and binary classifiers. This duality allows us to con-
vert 1D embeddings to classifiers, combine those classifiers
using AdaBoost, and convert the combined classifier into a
high-dimensional embedding.

7. CONSTRUCTING EMBEDDINGS VIA AD-
ABOOST

The AdaBoost algorithm is shown in Figure 3. AdaBoost
assumes that we have a “weak learner” module, which we
can call at each round to obtain a new weak classifier. The
goal is to construct a strong classifier that achieves much
higher accuracy than the individual weak classifiers.

The AdaBoost algorithm simply determines the appro-
priate weight for each weak classifier, and then adjusts the
training weights. The training weights are adjusted so that
training objects that are misclassified by the chosen weak
classifier hj get more weight for the next round.

At an intuitive level, in any training round, the high-
est training weights correspond to objects that have been
misclassified by many of the previously chosen weak clas-
sifiers. Because of the training weights, the weak learner
is biased towards returning a classifier that tends to cor-
rect mistakes of previously chosen classifiers. Overall, weak
classifiers are chosen and weighted so that they complement
each other. The ability of AdaBoost to construct highly ac-
curate classifiers using highly inaccurate weak classifiers has
been demonstrated in numerous applications (for example,
in [24, 25]).
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In the remainder of this section we will describe how we
use AdaBoost to construct an embedding, and how exactly
we implement steps 1-4 of the main loop shown in Figure 3.

7.1 Adaptation of AdaBoost
The training algorithm for BoostMap follows the AdaBoost

algorithm, as described in Figure 3. The goal of BoostMap
is to learn an embedding from an arbitrary space X to d-
dimensional Euclidean space R

d . AdaBoost is adapted to
the problem of embedding construction as follows:

• Each training object oi is a triple (qi, ai, bi) of objects
in X. Because of that, we refer to oi not as a training
object, but as a training triple. The set G from which
training triples are picked can be the entire X3 (the
set of all triples we can form by objects from X), or a
more restricted subset of X3, as discussed in Section
10.

• The i-th training triple (qi, ai, bi) is associated with a
class label yi. For BoostMap, yi = PX(qi, ai, bi), i.e.
yi is the proximity order of triple (qi, ai, bi), as defined
in Equation 1.

• Each weak classifier hj corresponds to a 1D embedding
F from X to R. In particular, hj = F̃ for some 1D
embedding F , where F̃ is defined in Equation 2.

Also, we pass to AdaBoost some additional arguments:

• A set C ⊂ X of candidate objects. Elements of C will
be as reference objects and pivot objects to define 1D
embeddings.

• A matrix of distances from each c ∈ C to each c ∈ C
and to each qi, ai and bi included in one of the training
triples in T .

7.2 Evaluating Weak Classifiers
At training round j, given training weights wi,j , the weak

learner is called to provide us with a weak classifier hj . In
our implementation, the weak learner simply evaluates many
possible classifiers, and many possible weights for each of
those classifiers, and tries to find the best classifier-weight
combination.

We will define two alternative ways to evaluate a classifier
h at training round j. The first way is the training error Λ:

Λj(h) =

tX
i=1

wi,jG(h, qi, ai, bi) , (11)

where G(h, qi, ai, bi) is the error of h on the i-th training
triple, as defined in Equation 4. Note that this training
error is weighted based on wi,j, and therefore Λj(h) will
vary with j, i.e. with each training round.

A second way to evaluate a classifier h is suggested in [21].
The function Zj(h, α) gives a measure of how useful it would
be to choose hj = h and αj = α at training round j:

Zj(h, α) =
tX

i=1

(wi,j exp(−αyih(qi, ai, bi))) . (12)

The full details of the significance of Zj can be found in [21].

Here it suffices to say that if Zj(F̃ , α) < 1 then choosing
hj = h and αj = α is overall beneficial, and is expected
to reduce the training error. Given the choice between

two weighted classifiers αh and α′h′, we should choose the
weighted classifier that gives the lowest Zj value. Given hj ,
we should choose αj to be the α that minimizes Zj(hj , α).

Finding the optimal α for a given classifier h, and the Zj

value attained using that α are very common operation in
our algorithm, so we will define shorthands for it:

Amin(h, j, l) = argminα∈[l,∞)Zj(h, α) . (13)

Zmin(h, j, l) = min
α∈[l,∞)

Zj(h, α) . (14)

In the above equation, j specifies the training round, and
l specifies a minimum value for α. Amin(h, j, l) returns the
α that minimizes Zj(h, α), subject to the constraint that
α ≥ l. Argument l will be used to ensure that no classifier
has a negative weight. In Section 7.4 we will use classifier
weights to define a weighted L1 distance measure DRd in Rd ,
and non-negative weights ensure that DRd is a metric.

7.3 Training Algorithm
At the end of the j-th round, the algorithm has assembled

an intermediate classifier Hj =
Pj

i=1 αihi. At a high level,
Hj is obtained from Hj−1 by performing one of the following
operations:

• Remove one of the already chosen weak classifiers.

• Modify the weight of an already chosen weak classifier.

• Add in a new weak classifier.

First we check whether a removal or a weight modification
would improve the strong classifier. If this fails, we add in a
new classifier. Removals and weight modifications that im-
prove the strong classifier are given preference over adding in
a new classifier because they do not increase the complexity
of the strong classifier.

It is possible that some weak classifier occurs multiple
times in Hj , i.e. that there exist i, g < j such that hi = hg.
Without loss of generality we assume that we also have an

alternative representation of Hj , such that Hj =
PKj

i=1 α
′
ih

′
i,

such that if g �= i then h′
g �= h′

i. Kj is simply the number of
unique weak classifiers occurring in Hj .

Our exact implementation of steps 1-4 from Figure 3 is as
follows:

1. Let z = minc=1,...,Kj−1 Zj(h′
c, α

′
c).

2. If z < 1:

• Set g = argminc=1,...,Kj−1
Zj(h′

c, α
′
c).

• Set hj = h′
g, αj = −α′

g .

• Go to step 11.

Comment: If z < 1, we effectively remove h′
g from the

strong classifier.

3. Let z = minc=1,...,Kj−1 Zmin(h′
c, j,−α′

c).

4. If z < .9999:

• Set g = argminc=1,...,Kj−1
Zmin(h′

c, j,−α′
c).

• Set hj = h′
g.

• Set αj = Amin(h′
g , j,−α′

g).

• Go to step 11.
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Comments: Here we modify the weight of h′g, by adding
αj to it. The third arguments used when calling Zmin

and Amin ensure that αj ≥ −α′
g, so that αj +α′

g (which
will be the new weight of h′g in Hj) is guaranteed to be
non-negative. Also, note that we check if z < .9999.
In principle, if z < 1 then this weight modification is
beneficial. By using .9999 as a threshold we avoid mi-
nor weight modifications with insignificant numerical
impact on the accuracy of the strong classifier.

5. Choose randomly M1 reference objects r1, . . . , rM1 from
the set C of candidate objects. Construct a set Fj1 =
{F ri |i = 1, . . . ,M1 of M1 1D embeddings using those
reference objects, as described in Section 4.1.

6. Choose randomly a set Cj = {(x1,1, x1,2), ..., (xm,1, xm,2)}
of m pairs of elements of C, and construct a set of em-
beddings Fj2 = {F x1,x2 | (x1, x2) ∈ Cj}, where Fx1,x2

is as defined in Equation 8.

7. Define Fj = Fj1 ∪ Fj2 . We set F̃J = {F̃ | F ∈ Fj }.

8. Evaluate Λj(h) for each h ∈ F̃J , and define a set H j

that includes the M2 classifiers in F̃J with the smallest
Λj(h).

9. Set hj = argminh∈Hj
Zmin(h, (h, j, 0).

10. Set αj = Amin(hj , j, 0).

Comment: The third argument to Zmin and Amin in
the last two steps is 0. This constrains αj to be non-
negative.

11. Set zj = Zj(hj , αj).

12. Set training weights wi,j+1 for the next round using
Equation 9.

In step 8, using a small M2 reduces training time, because
it lets us evaluate Amin only for M2 classifiers. In general,
evaluating the weighted training error Λj for a classifier h
is faster (by a factor of five to ten in our experiments) than
evaluating Amin, because in Amin we need to search for the
optimal value α that minimizes Zj(h, α). If we do not care
about speed, we should set M2 = M1 and M1 = |C|.

The algorithm can terminate when we have chosen a de-
sired number of classifiers, or when, at a given round j, we
get zj ≥ 1, meaning that we have failed to find a weak clas-
sifier that would be beneficial to add to the strong classifier.

7.4 Training Output: Embedding and Dis-
tance

The output of the training stage is a continuous-output
classifier H =

Pd
c=1 αcF̃c, where each F̃c is associated with

a 1D embedding Fc. This classifier has been trained to esti-
mate, for triples of objects (q, a, b), if q is closer to a or to b.
However, our goal is to actually construct a Euclidean em-
bedding. Here we discuss how to define such an embedding,
so that the embedding is as accurate as the classifier H in
estimating for any triple (q, a, b) if q is closer to a or to b.

Without loss of generality, we assume that if c �= j then
F̃c �= F̃j (otherwise we add αj to αc and remove F̃j from
H.) Given H, we define an embedding Fout : X → R

d and
a distance DRd : Rd × R

d → R:

Fout(x) = (F ′
1(x), ..., F ′

d(x)) . (15)

DRd((u1, ..., ud), (v1, ..., vd)) =

dX
c=1

(αc|uc − vc|) . (16)

DRd is a weighted Manhattan (L1) distance measure. DRd

is a metric, because the training algorithm ensured that all
αc’s are non-negative. We should note that, in the imple-
mentation used in [2], we had allowed weights to also be
negative. By ensuring that DRd is a metric, we can apply to
the resulting embedding any additional indexing, clustering
and visualization tools that are available for metric spaces.

It is important to note that the way we defined Fout and
DRd, if we apply Equation 2 to obtain a classifier F̃out from
Fout, then F̃out = H1, i.e. the output of AdaBoost. The
proof is straightforward:

Proposition 1. F̃out = H.

Proof:

F̃out(q, a, b) = DRd(Fout(q), Fout(b)) −DRd(Fout(q), Fout(a))

=
dX

c=1

(αc‖Fc(q) − Fc(b)‖ − αc‖Fc(q) − Fc(a)‖)

=
dX

c=1

(αc(‖Fc(q) − Fc(b)‖ − ‖Fc(q) − Fc(a)‖))

=
dX

c=1

(αcF̃c(q, a, b)) = H(q, a, b) . ✷

This equivalence is important, because it shows that the
quantity optimized by the training algorithm is exactly the
quantity that we set out to optimize in our problem defini-
tion, i.e. the classification error G( ˜Fout) on triples of objects.

We should note that this equivalence between classifier
H and embedding Fout relies on the way we define DRd.
If, for example we had defined DRd as an L2 distance, or
an unweighted L1 distance, then the equivalence would no
longer hold.

One may ask the following question: what if we had a
very accurate classifier H, but H did not correspond to an
embedding. Could we use H directly? To answer this ques-
tion, we should keep in mind that our final goal is a method
for producing efficient rankings of all objects in a database,
in approximate order of similarity to a query object q. Any
classifier H that estimates whether q is closer to a or to b
defines (given a query object q) a partial order of database
objects, based on their estimated similarity to q. However,
it is mathematically possible to design classifiers of triples
of objects that do not define a total order for every q. By
proving that classifier H is mathematically equivalent to a
Euclidean embedding Fout, we guarantee that H defines a
total order of database objects based on their similarity to
query object q, and therefore H always gives well-defined
similarity rankings.

7.5 Complexity
Before we start the training algorithm, we need to com-

pute a matrix of distances from each c ∈ C to each c ∈ C and
to each qi, ai and bi included in one of the training triples
in T . This can often be the most computationally expen-
sive part of the algorithm, depending on the complexity of
computing DX . In addition, at each training round we eval-
uate M1 classifiers. Therefore, the computational time per
training round is O(M1t), where t is the number of train-
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ing triples. In contrast, FastMap [10], SparseMap [13], and
MetricMap [26] do not require training at all.

Computing the d-dimensional embedding of n database
objects takes time O(dn). Computing the d-dimensional
embedding of a query object takes O(d) time and requires
O(d) evaluations of DX . Comparing the embedding of the
query to the embeddings of n database objects takes time
O(dn). For a fixed d, these costs are similar to those of
FastMap [10], SparseMap [13], and MetricMap [26].

In the experiments, as well as in [2], we see that Boost-
Map often yields significantly higher-dimensional embed-
dings than FastMap. In that case, embedding the query
object and doing comparisons in Euclidean space is slower
for BoostMap. At the same time, in filter-and-refine ex-
periments, BoostMap actually leads to much faster retrieval
than FastMap; the additional cost of comparing high-dimensional
Euclidean vectors is negligible compared to the savings we
get in the refine step, using the superior quality of BoostMap
embeddings.

8. QUERY-SENSITIVE EMBEDDINGS
It is often beneficial to generate, using BoostMap, a high-

dimensional embedding, with over 100 dimensions. Such
high-dimensional embeddings incur the additional cost of
comparing high-dimensional Euclidean vectors. At the same
time, the additional accuracy we gain in high dimensions can
be desirable, and it can even lead to faster overall retrieval by
reducing p in a filter-and-refine implementation, as described
in Section 4.3. This effect is demonstrated in experiments
with BoostMap, both in [2] and in this paper.

However, even though producing a high-dimensional em-
bedding can be beneficial, finding nearest neighbors in high
dimensions also poses the following problems, as pointed out
in [1]:

• Lack of contrasting: two high-dimensional objects
are unlikely to be very similar in all the dimensions.

• Statistical sensitivity: The data is rarely uniformly
distributed, and for a pair of objects there may be
only relatively few coordinates that are statistically
significant in comparing those objects.

• Skew magnification: Many attributes may be cor-
related with each other.

BoostMap produces a high-dimensional embedding that
preserves more of the proximity structure of the original
space, as compared to lower-dimensional embeddings. In
that sense, distances measured in high dimensions are more
meaningful than distances measured in low dimensions, since
our goal is accurate similarity rankings with respect to dis-
tances in the original non-Euclidean space. At the same
time, the three problems outlined above are still present,
in the sense that we can achieve even better accuracy by
addressing those problems in our formulation.

To address those problems, we extend the BoostMap al-
gorithm so that it produces a query-sensitive distance mea-
sure. By “query-sensitive” we mean that the weights used
for the weighted L1 distance will not be fixed, as defined in
Equation 16. Instead, they will depend on the query object.
An automatically chosen query-sensitive distance measure
provides a principled way to address the three problems de-
scribed in [1], by putting more emphasis on coordinates that

are more important for a particular query, and at the same
time setting each weight while taking into account the effects
of all other weights.

8.1 Learning a Query-Sensitive Classifier
Learning a query-sensitive distance measure is still done

within the framework of AdaBoost, using a simplified ver-
sion of the alternating decision-tree algorithm, described in
[11]. As described earlier, every 1D embedding F corre-

sponds to a classifier F̃ , that classifiers triples (q, a, b) of
objects in X. The key idea in defining query-sensitive dis-
tance measures is that F̃ may do a good job only when q is
in a specific region, and it is actually beneficial to ignore F̃
when q is outside that region. In order to do that, we need
another classifier S(q) (which we call a splitter), that will

estimate, given a query q, whether F̃ is useful or not.
More formally, if X is the original space, suppose we have

a splitter S : X → {0, 1} and a 1D embedding F : X → R.

We define a query-sensitive classifier Q̃S,F : X3 → R, as
follows:

Q̃S,F (q, a, b) = S(q)F̃ (q, a, b) . (17)

We say that the splitter S accepts q if S(q) = 1, and S rejects
q if S(q) = 0.

We can readily define splitters using 1D embeddings. Given
a 1D embedding F : X → R, and a subset V ⊂ R, we can
define a splitter SF,V : X → {0, 1} as follows:

SF,V (q) =

�
1 if F (q) ∈ V .
0 otherwise .

(18)

We will use the notation Q̃F1,V,F2 for the query-sensitive
classifier that is based on SF1,V and F2:

Q̃F1,V,F2(q, a, b) = SF1,V (q)F̃ (q, a, b) . (19)

Suppose that the algorithm described in Section 7 has
produced a d-dimensional embedding Fout : X → R

d , such
that Fout(x) = (F1(x), . . . , Fd(x)). We will introduce a sec-
ond training phase, that starts after Fout has been produced,
and adds a query-sensitive component to F̃out. This query-
sensitive component will be a combination of query-sensitive
classifiers Q̃Fc,V,Fg , where Fc and Fg are parts of Fout, and
V ⊂ R.

Let J be the number of training rounds it took to pro-
duce classifier H as described in Section 7, and let H =Pd

c=1 αcF̃c . For training round j > J (i.e. for a training
round of the second training phase, that builds the query-
sensitive component), we perform the following steps:

1. For each c = 1, . . . , d, pick g randomly from 1, . . . , d,
so that with 0.5 probability g = c. Define Γc = Fg.

2. For each c = 1, . . . , d, define a set Vc of subsets of
R, such that each V ∈ Vc is of the form R, (−∞, t),
(t,∞), (t1, t2), (−∞, t1) ∪ (t2,∞) (where t, t1, t2 are
real numbers).

Comment: Each V ∈ Vc will be combined with Γc to
define a splitter. Choosing sets V can be done by look-
ing at the set of values {Γc(qi) : i = 1, . . . , t}, where qi
is the first object of the i-th training triple, and picking
thresholds t, t1, t2 randomly from those values.

3. For each c = 1, . . . , d, set:
Vc = argminV ∈V(Zmin(Q̃Γc,V,Fc , j, 0)).
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Comment: here, given 1D embeddings Γc and Fc, we
find the range Vc ∈ V that leads to the best classifier
Q̃Γc,V,Fc (i.e. the classifier that attains the lowest Zj

value).

4. Set g = argminc=1,...,d(Zmin(Q̃Γc,Vc,Fc , j, 0)).

Comment: here we find the g ∈ {1, . . . , d} for which

the corresponding classifier Q̃Γg,Vg ,Fg is the best.

5. Set hj = Q̃Γg,Vg ,Fg .

6. Set αj = Amin(hj , j, 0).

Comment: Note that the third argument to Amin and
Zmin in all steps has been 0. This constraints αj to be
non-negative.

7. Set zj = Zj(hj , αj).

8. Set training weights wi,j+1 for the next round using
Equation 9.

Comment: the last three steps are identical to the last
three steps of the algorithm in Section 7.3.

Note that the first round of the second training phase,
which is training round J + 1 overall, uses training weights
wi,J+1, as they were set by the last training round (round J)
of the first training phase (which was described in Section
7).

If H was the output of the first training phase, and if
the second training phase was executed in training rounds
J + 1, . . . , J2, we write the output H2 of the second training
phase as follows:

H2 = H +

J2X
c=J+1

αchc . (20)

We expect H2 to be more accurate than H, because it
includes query-sensitive classifiers, each of which is focused
on a specific region of possible queries. In particular, for
each classifier F̃c used in H, the second training phase tries
to identify subsets of queries where F̃c is particularly useful,
and increases the weight of F̃c for those queries.

8.2 Defining a Query-Sensitive Embedding
In Section 7.4 we used H to define an embedding Fout,

that maps objects of X into R
d , and a distance DRd, such

that F̃out was equivalent to H. Now that we have con-
structed H2, we also to define an embedding and a distance
based on H2. The embedding associated with H2 is still
Fout, since H2 only uses 1D embeddings that also occur in
H. On the other hand, we cannot define a global distance
measure in R

d anymore that would make F̃out equivalent
to H2. To achieve this equivalence between F̃out and H2,
we define a query-sensitive distance Dq, that depends on
the query object q. First, we define an auxiliary function
Ac(q), which assigns a weight to the c-th coordinate, for
c = 1, . . . , d:

Ac(q) = αc +
X

g:g∈{J+1,...,J2}∧hg=Q̃S,Fc∧(S(q)=1)

αg . (21)

In words, for coordinate c, we go through all the query-
sensitive weak classifiers that were chosen at the second
training phase. Each such query-sensitive classifier hg can

be written as Q̃S,F . We check if the splitter S accepts q,
and if F = Fc. If those conditions are satisfied, we add the
weight αg to αc.

If Fout(q) = (q1, ..., qd), and x is some other object in X,
with Fout(x) = (x1, ..., xd), we define query-sensitive dis-
tance Dq as follows:

Dq((q1, ..., qd), (x1, ..., xd)) =
dX

c=1

(Ac(q)|qc − xc|) . (22)

Now, using this distance Dq , with a slight modification of
Equation 2, we can define F̃out,2 in such a way that F̃out,2 =
H2:

F̃out,2(q, x1, x2) = Dq(Fout(q), Fout(x2)) −
Dq(Fout(q), Fout(x1)) . (23)

The only difference from Equation 2 is that here we use the
query-sensitive distance measure Dq, as opposed to a global
distance measure DRd.

We omit the proof that F̃out,2 = H2, it is pretty straight-
forward and follows the same steps as the proof of Propo-
sition 1. The fact that F̃out and H2 establishes that, if the
query-sensitive classifier H2 is more accurate than classifier
H, then we using the query-sensitive distance Dq will lead
to more accurate results. This is demonstrated in our ex-
periments.

8.3 Complexity of Query-Sensitive Embeddings
To learn a query-sensitive embedding we have to perform

additional training using AdaBoost. The actual number of
classifiers Q̃ we can define using embeddings in H1 can be
quite large, since we can form such a classifier for each pair
of embeddings occurring in H1 and each choice of a range
R. We can keep training time manageable because of two
reasons:

• We noted that, in early implementations, AdaBoost

tended to choose query sensitive classifiers (̃Q)F,F,R,
i.e. classifiers that used the same 1D embedding twice
F . The interpretation of that is that F (q) tends to con-

tain significant information about whether F̃ is useful
on triples of type (q, a, b). Based on that observation,
in our current implementation we have AdaBoost con-

sider all classifiers (̃Q)S,F in which S is defined us-
ing F , and an equal number of classifiers (chosen ran-
domly) where S is not defined using F .

• For each pair of 1D embeddings F1 and F2, we use that

pair to define a large number of (̃Q)S,F2 classifiers, by
defining a splitter S based on F1 and any of a large
number of possible ranges R. However, the training

errors of all those classifiers (̃Q)S,F2 are related, since
the only thing that is different among those classifiers
is the range R ∈ R of the splitter S. If r is the number
of ranges we are willing to consider, and t is the number
of training triples used in AdaBoost, we can measure
the training errors of all ranges in time O(t + r), as
opposed to the time O(tr) it would take if we evaluated
all those errors independently of each other. Based on
that, at each training round, given F1 and F2 we can
quickly evaluate a large number of ranges and choose
the range that has the smallest training error.
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At retrieval time, given a query, using a query-sensitive
distance measure incurs negligible additional cost over using
a query-insensitive distance measure. The only additional
computation we need is in order to compute the Ac(q) val-
ues, i.e. the query-specific weights of each coordinate j. This
can be done by scanning the classifier H2 once. The size of
classifier H2 in practice is comparable to the dimensionality
of the embedding. The total cost of this scanning is marginal
compared to the cost of evaluating distances between the
embedding of q and the embedding of each database object.

9. OPTIMIZING EMBEDDINGS FOR CLAS-
SIFICATION

When we have a database of objects in some non-Euclidean
or even non-metric space X, Euclidean embeddings can be
used for indexing, in order to efficiently identify the nearest
neighbors of a query in the original space X. However, in
many applications, our ultimate goal is not retrieving near-
est neighbors, but actually classifying the query, using the
known class information of the query’s nearest neighbors.
This section describes how we can optimize embeddings di-
rectly for classification accuracy.

9.1 Hidden Parameter Space
As elsewhere in this paper, let X be an arbitrary space, in

which we define a (possibly non-metric) distance DX . Here
we also assume that there is an additional distance defined
on X, which we denote as ΦX . We will call DX the feature
space distance and we will call ΦX the hidden parameter
space distance, or simply the parameter space distance.

Our experimental dataset, the MNIST database, provides
an example. The MNIST database consists of 60,000 train-
ing images and 10,000 test images of handwritten digits.
Some of those images are shown in Figure 4. Each image
shows one of the 10 possible digits, from 0 to 9. One can de-
fine various distance measures on this space of hand images,
like the non-metric chamfer distance [5], or shape context [6].
Given a query image q , we want to find the nearest neigh-
bor (or k-nearest neighbors, for some k) of the query, and
using the class labels of those neighbors we want to classify
the query.

In this case, the feature space distance DX is a distance
measure like the chamfer distance or shape context, that
depends on object features. Given two objects, we can al-
ways observe those features, and therefore we can always
evaluate DX . The hidden parameters in this case are the
class labels of the objects, which we cannot directly observe
but we want to estimate. The hidden parameters are known
for the database objects (the training images), but not for
the query objects. We define the hidden parameter space
distance ΦX between two objects x, y ∈ X to be 0 if those
two objects have the same class labels (i.e. are pictures of
the same digit), and 1 if the two objects have different class
labels.

There are also domains where ΦX is not a binary distance.
For example, a dataset in which we evaluated the original
BoostMap algorithm consisted of hand images [2]. In those
images, we used the chamfer distance as the feature space
distance, but the goal was to actually estimate the hand pose
in the query image. Hand pose is a continuous space, defined
by articulated joint angles and global 3D orientation of the
hand. In this case one can define a distance ΦX between

hand poses. Since hand poses are not known for the query
images, they are hidden parameters.

When our goal is to estimate the hidden parameters of the
query object, the only use of feature space distance measure
DX is that lets us perform this estimation, using nearest-
neighbor classification. Suppose now that we map database
objects into a Euclidean space, using BoostMap for exam-
ple, and we have a choice of two distance measures, D1 and
D2, to use in the Euclidean space. For illustration pur-
poses, let’s make an extreme assumption that D1 perfectly
preserves distances DX , and D2 is a bad approximation of
DX , but it leads to higher classification accuracy than DX

(and therefore than D1). In that case, if classification is our
goal, D2 would be preferable over D1.

9.2 Tuning BoostMap for Classification
Euclidean embeddings, like FastMap, MetricMap, Lips-

chitz embeddings, and BoostMap, provide a Euclidean sub-
stitute for the feature space distance DX , which itself is
a substitute for the hidden parameter space distance ΦX ,
which cannot be evaluated exactly. Therefore, the distance
measure used in the Euclidean space is two levels of approx-
imation away from ΦX , which is the measure we really want
to estimate. However, since BoostMap is actually trained
using machine learning, we can easily modify it so that it is
directly optimized for classification, i.e. for recovering ΦX .

Optimizing BoostMap for classification accuracy is pretty
straightforward. As described in the overview of the train-
ing algorithm, each training triple (qi, ai, bi) has a class label
yi = PX(q, x1, x2). Note that the definition of PX in Equa-
tion 1 is based on an underlying distance measure D between
objects of X. If our goal is approximating DX , then we set
D = DX . If our goal is nearest-neighbor classification, we
use D = ΦX .

If we have a training triple (qi, ai, bi) where q is closer to
b using measure DX but closer to a using measure ΦX , then
defining class label yi using ΦX will steer the training algo-
rithm towards trying to produce an embedding Fout and a
distance Dq such that Dq(Fout(q), Fout(a)) < Dq(Fout(q), Fout(b)).
Overall, the training algorithm will try to map objects from
the same class closer to each other than to objects of other
classes.

10. CHOOSING TRAINING TRIPLES
In the original implementation and experimental evalu-

ation of BoostMap in [2], training triples were chosen at
random. With a random training set of triples, BoostMap
tries to preserve the entire similarity structure of the orig-
inal space X. This means that the resulting embedding
is equally optimized for nearest neighbor queries, farthest
neighbor queries, or median neighbor queries. In cases where
we only care about nearest neighbor queries, we would ac-
tually prefer an embedding that gave more accurate results
for such queries, even if such an embedding did not preserve
other aspects of the similarity structure of X, like farthest-
neighbor information.

If we want to construct an embedding for the purpose of
answering nearest neighbor queries, then we can construct
training triples in a more selective manner. The main idea
is that, given an object q, we should form a triple (q, a, b)
where both a and b are relatively close to q.

In our experiments with the MNIST database, having in
mind that we also wanted to optimize embeddings for classi-
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fication accuracy, we choose training triples as follows: first,
we specify the desired number t of training triples to pro-
duce, and an integer k′ that specifies up to how “far” ai and
bi can be from qi in each triple (qi, ai, bi). Then, we choose
the i-th training triple (qi, ai, bi) as follows:

1. Choose a random training object qi.

2. Choose an integer k in 1, . . . , k′.

3. Choose ai to be the k-nearest neibhor of qi among all
training objects for which Φ(ai, qi) = 0. This way ai

has the same class label as qi.

4. Choose a number r in 9k, · · · , 9k + 9. Note that 10 is
the number of classes in the MNIST database, and 9 is
the number of classes that are different than the class
of qi.

5. Choose bi to be the r-nearest neighbor of qi among all
training objects whose class label is different than the
class label of qi.

Essentially, each training triple contains an object q, one
of its nearest neighbors among objects of the same class as
q, and one of the nearest neighbors among objects of all
classes different than the class of q. If we did not care about
classification, we could simply have chosen random triples
such that a and b are among the k′ nearest neighbors of q.

The reason we choose r to be roughly 9 times bigger than
k is that, with that choice, it is reasonable to assume that
most of the times DX(qi, ai) will be smaller than DX(qi, bi).
In general, if M is the number of classes, even if DX carries
zero information about ΦX , we still expect that on average
the k-nearest neighbor of q among same-class objects will
have the same rank as the k(M − 1)-nearest neighbor of q
among objects that belong to different classes. For this as-
sumption to hold, we just need to have the same number of
objects in each class, and DX to be not worse than a ran-
dom distance measure for k-nearest neighbor classification.
These are very weak assumptions. At the same time, if we
learn an embedding that, for a large percentage of q objects
and k values, maps q closer to its k-nearest neighbor among
same-class objects than to the k(M − 1)-nearest neighbor
among objects of different classes, then we expect that em-
bedding to lead to high nearest-neighbor classification accu-
racy. So, setting r = M−1 we expect the weak classifiers to
be better than random classifiers, and the accuracy of the
strong classifier on triples is related to k-nn classification
accuracy on query objects using the embedding.

If our goal is not classification, but simply to provide ac-
curate indexing for nearest neighbor retrieval, the method
outlined above for choosing training triples would still be
useful. In each triple (q, a, b), a and b are both relatively
close to q, and therefore the training set of triples biases the
training algorithm to focus on preserving k-nearest-neighbor
structure, for small values of k, as opposed to preserving
similarity structure in general.

11. EXPERIMENTS
We compared BoostMap to FastMap [10] on the MNIST

dataset of handwritten digits, which is described in [16],
and is publicly available on the web. This dataset consists
of 60,000 training images, which we used as our database,
and 10,000 images, which we used as queries. Some of those

Figure 4: Some examples from the MNIST database
of handwritten images.

images can be seen in Figure 4. We used the symmetric
chamfer distance [5] as the underlying distance measure.
The chamfer distance is non-metric, because it violates the
triangle inequality.

For BoostMap, we always used 200,000 triples for training.
The objects appearing in those triples came from a set of
5000 database objects. The size of C, the set of candidate
objects defined in Section 7.1, was also 5000. We used M1 =
1000, and M2 = 200. FastMap was run on a distance matrix
produced using 10,000 training objects.

For BoostMap we have tested different variants, in order
to evaluate the advantages of the three extensions intro-
duced in this paper: choosing training triples in a selective
way, vs. choosing them randomly, using a query-sensitive
distance measure vs. using a global distance measure in Eu-
clidean space, and optimizing BoostMap for classification
vs. optimizing BoostMap for preserving proximity struc-
ture. To denote each of these variants, we use the following
abbreviations:

Fe Embedding optimized for approximating feature-space
distances DX , as opposed to Pa.

Pa Embedding optimized for approximating parameter-space
distances ΦX , i.e. for classification accuracy, as op-
posed to Fe.

QI Query-insensitive distance measure DRd is used, as de-
fined in Section 7.4. The alternative to QI is QS.

QS Query-sensitive distance measure Dq is used, as op-
posed to QI.

Ra Training triples are chosen entirely randomly from the
set of all possible triples, as opposed to Se.

Se Training triples are chosen selectively, from a restricted
set of possible triples, as described in Section 10. The
alternative to Se is Ra.

For example, BoostMap-Fe-Se-QS means that the em-
bedding was optimized for approximating feature-space dis-
tances, we chose training triples selectively, and we used a
query-sensitive distance measure.

11.1 Measures of Embedding Accuracy
To evaluate the accuracy of the approximate similarity

ranking for a query, we use a measure that we call exact
k-nearest neighbor rank (ENN-k rank), defined as follows:
given query object q, and integer k, let b1, . . . , bk be the

11
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Figure 5: Plots of the 95th and 99th percentile of ENN-k ranks attained by FastMap, BoostMap-Fe-Ra-QI, and

BoostMap-Fe-Se-QI, for different embedding dimensions, for k = 1, 10, 100.
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k-nearest neighbors of q in the database, under the exact
distance DX . Given an embedding F , the rank of any bi

under the embedding is defined to be one plus the number
of database objects that F maps closer to F (q) than F (bi)
is to F (q). Then, the ENN-k rank for q under embedding F
is the worst rank attained by any object in b1, . . . , bk.

For example, for k = 10, an ENN-10 rank of 150 using
BoostMap and 16 dimensions means that all 10 exact k-
nearest neighbors of q were within the 150 nearest neighbors
of the query, as computed using a 16-dimensional BoostMap
embedding. Using filter-and-refine retrieval, if we keep 150
or more candidates after the filter step, we will successfully
identify all 10 nearest neighbors of q at the refine step.

If we have a set of queries, then we can look at different
percentiles of the ENN-k ranks attained for those queries.
For example, given embedding F , a value of 3400 for the
95th percentile of ENN-10 ranks means that, for 95% of the
10,000 query objects, the ENN-10 rank was 3400 or less.

Another measure of accuracy for an embedding F is sim-
ply the k-nearest neighbor classification error using F . Given
query object q, we identify the k-nearest neighbors of F (q)
in the embedding of the database. Each of those k objects
gives a vote for its class label. The class label that receives
the most votes is assigned to q. If two or more classes receive
the same number of votes, we find, for each class y among
those classes, the database object xy,q that belongs to class
y and is the nearest to q, and we choose the class y for which
the corresponding xy,q is the closest to q. If there is still a
tie, we break it by choosing at random.

11.2 BoostMap vs. FastMap
Figure 5 shows the 95th and 99th percentiles of ENN-k

attained by FastMap, BoostMap-Fe-Ra-QI, and BoostMap-
Fe-Se-QI, for different embedding dimensions, for k = 1, 10,
100. We note that in fewer than 16 dimensions, FastMap
sometimes gives the best results. From 16 dimensions and
on, BoostMap-Fe-Ra-QI (which is essentially the BoostMap
variant described in [2]) gives better results than FastMap.
BoostMap-Fe-Se-QI does worse for lower dimensions, but at
256 dimensions it gives the best results in all cases. These
facts also hold for other values of k (up to 100) and other
percentiles (from 80% to 99%) that we have checked.

The results demonstrate that, in a filter-and-refine frame-
work, using BoostMap-Fe-Ra-QI we typically need to keep
significantly fewer candidate matches after the filter step,
and overall we can find the correct top k nearest neighbors
evaluating far fewer exact distances DX , compared to using
FastMap. As k and the percentile increase, at some point it
becomes beneficial to use BoostMap-Fe-Se-QI.

For example, if we want to retrieve the true 10 nearest
neighbors (k = 10) for 98% of the query objects, these are
the optimal results we get for the three different methods:

FastMap: We get the best result for 11 dimensions, and
keeping 5523 database objects after the filter step. We
need to compute 22 distances DX to embed each query,
and 5523 distances DX to find the 10 nearest neigh-
bors. In total, we compute 5545 DX distances.

BoostMap-Fe-Ra-QI: We get the best result for 256 di-
mensions, and keeping 1698 database objects after the
filter step. We need to compute at most 512 distances
DX to embed each query (for some dimensions we need
one DX evaluation, for some dimensions we need two

BoostMap-Fe-QI BoostMap-Fe-QS
k percentile random selective random selective
1 95 77 20 38 20
1 99 349 73 136 62
10 95 949 330 502 273
10 99 2483 1010 1302 675
100 95 6220 4406 3773 3215
100 99 11617 10508 7437 7333

Table 1: Comparison of the two methods for choosing

training triples: sampling them from the set of all possi-

ble triples vs. choosing them from a selective subset of

triples. For 256-dimensional embeddings, we show the

95th and 99-th percentiles of ENN-k ranks, for k = 1,

10, 100.

DX evaluations), and 1698 distances DX to find the
10 nearest neighbors. In total, we compute at most
2210 DX distances.

BoostMap-Fe-Se-QI: We get the best result for 256 di-
mensions, and keeping 637 database objects after the
filter step. We need to compute at most 512 distances
DX to embed each query, and 637 distances DX to
find the 10 nearest neighbors. In total, we compute at
most 1149 DX distances.

In domains where computing DX distances is the compu-
tational bottleneck, and computing distances in 256-dimensional
Euclidean space is relatively fast, results like the above mean
that BoostMap leads to significantly more efficient filter-
and-refine retrieval.

At this point, we have only trained 256-dimensional query-
sensitive embeddings, so we do not have enough data to
include query-sensitive embeddings to the plots of Figure
5. Later in this section we show that using query-sensitive
embeddings further improves embedding quality.

11.3 Random vs. Selective Training Triples
Figure 5 shows the ENN-k ranks attained by BoostMap-

Fe-Se-QI vs. BoostMap-Fe-Ra-QI for different percentiles.
We note that, for lower dimensions, choosing training triples
from a restricted set seems to lead to less accurate em-
beddings. On the other hand, at 256 dimensions, choosing
triples selectively leads to more accurate embeddings.

One possible interpretation of these results is that, by
choosing triples selectively, the training algorithm optimizes
the embedding so that it is highly accurate on those triples,
but not necessarily on other triples. If each training triple
(q, a, b) is such that ai and bi are close to qi, the training will
not consider triples (q, a, b′) where b is farther away from
q (for example, cases where b′ is not in the 1000 nearest
neighbors of q).

For example, suppose that we want to retrieve the 10 near-
est neighbors a1, . . . , a10 of q in the original space X with
distance measure DX . An ideal embedding Fideal would map
q closer to those 10 neighbors than to any other object. The
ENN-10 rank that is achieved by an embedding F for object
q increases because of objects bi such that F (q) is closer to
bi than it is to one of the ten nearest neighbors ai. Choos-
ing training triples (q, a, b) so that b is, say, within the 1000
nearest neighbors of q, we make the implicit assumption that
objects outside the 1000 nearest neighbors of q will not cause
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Figure 6: Comparison of the two methods for choosing training triples: sampling them from the set of all possible

triples vs. choosing them from a selective subset of triples. We plot ENN-k ranks vs. percentile, for 256-dimensional

embeddings, for k = 1, 10, 100. On the left we show query-insensitive embeddings, on the right we show query-sensitive

embeddings. In all cases, and for all percentiles, choosing triples selectively leads to better results.
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Figure 7: Comparison of query-insensitive versus query-sensitive embeddings. We plot ENN-k ranks vs. percentile, for

256-dimensional embeddings, for k = 1, 10, 100. On the left we show embeddings learned using random training triples,

on the right we show embeddings learned using selective training triples. In most cases query-sensitive embeddings

give similar or better results, compared to query-insensitive embeddings, when all other settings are fixed.

14



0 10 20 30 40 50 60 70 80 90 100
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

k

k−
nn

 c
la

ss
ifi

ca
tio

n 
er

ro
r

Pa−Se−QI
Pa−Se−QS

Figure 8: K-nearest neighbor classification error using

query-insensitive and query-sensitive embeddings. For

k = 1, . . . , 100 we show the corresponding k-nn error rate.

problems, i.e. we expect that the embedding F will not map
q closer to any of those distant objects than to q’s 10 near-
est neighbors. That’s why we want the training algorithm
to focus more on triples where b is close to q.

This assumption is obviously violated in lower-dimensional
embeddings, which are not very accurate and they can map
distant objects close to each other. In those cases, choosing
random triples forces the training algorithm to try to pre-
serve the overall proximity structure of the space, whereas
choosing triples so that a and b are close to q means that
the training algorithm does not penalize choices that map
distant objects close to each other.

In high dimensions, it is much more rare for distant ob-
jects to map close to each other, and then the main source
of indexing errors is objects that are somewhat close to q.
Training BoostMap with selective triples optimizes the em-
bedding so as to avoid that type of indexing errors, so overall
we get higher embedding quality.

At this point, this interpretation is just a hypothesis. We
need additional experiments, in which we vary the parame-
ter k′ (defined in Section 10) that specifies how close a and
b are to q for each training triple. If larger k′ values lead
to higher accuracy in lower dimensions, that would provide
supporting evidence for our interpretation. In the experi-
ments reported here, we used k′ = 4.

To demonstrate the advantages of choosing triples selec-
tively for high-dimensional embeddings, we compare the two
methods of choosing training triples in Figure 6 and Table 1.
The results demonstrate that, in 256 dimensions, choosing
triples selectively leads to better embedding quality.

11.4 Query-Sensitive vs. Query-Insensitive Em-
beddings

To evaluate the benefits of query-sensitive embeddings
(i.e. BoostMap embeddings that use query-sensitive dis-
tance measures) we trained, for different settings, query-
sensitive 256-dimensional embeddings. Figure 7 and Table
2 compare query sensitive embeddings to query-insensitive

BoostMap-Fe-Ra BoostMap-Fe-Se
k percentile random selective random selective
1 95 77 38 20 20
1 99 349 136 73 62
10 95 949 502 330 273
10 99 2483 1302 1010 675
100 95 6220 3773 4406 3215
100 99 11617 7437 10508 7333

Table 2: Comparison of the two methods for choosing

training triples: sampling them from the set of all possi-

ble triples vs. choosing them from a selective subset of

triples. For 256-dimensional embeddings, we show the

95th and 99-th percentiles of ENN-k ranks, for k = 1,

10, 100.

embeddings, based on different percentiles of ENN-k ranks.
We see that, in most cases, the query-sensitive variants give
similar or better results than the query-insensitive variants,
and in some cases the results are significantly better.

We also evaluate query-sensitive embeddings based on
the k-nn classification error rate attained using embeddings
optimized for classification (parameter-space embeddings).
Figure 8 shows the corresponding results for 256-dimensional
parameter-space embeddings. For all values of k that we
tested, the query-sensitive embedding had lower error rate
than the query-insensitive embedding.

11.5 Parameter-Space vs. Feature-Space Em-
beddings

As discussed in Section 9, we expect parameter-space em-
beddings to be worse than feature-space embeddings with
respect to preserving the feature-space distance DX , but at
the same time we expect parameter-space embeddings to
give higher classification accuracy than feature-space em-
beddings. Figure 9 shows percentiles of ENN-k ranks, and
Figure 10 shows the k-nn error rates achieved for different
values of k, for feature-space and parameter-space embed-
dings. These results agree with our expectations.

Figure 11 and Table 3 compare the classification error
rates achieved using the original chamfer distance and using
a 256-dimensional parameter-space query-sensitive embed-
ding. It is interesting to note that for most values of k
the embedding actually achieves a lower error rate than the
original distance measure. The chamfer distance achieves
the best overall error rate, but it is only marginally better
than the best error rate achieved using the embedding: for
k = 5, the chamfer distance misclassified 463 images and the
embedding misclassified 468 images, out of 10,000 objects.

In domains where we get such results, we actually do not
need to apply filter-and-refine retrieval in order to do k-nn
classification, since we get equally good results using near-
est neighbors in the Euclidean space. When computing dis-
tances in the original space is the computational bottleneck,
using a parameter-space embedding can speed up recogni-
tion significantly, since we only need to compute a few hun-
dreds of distances in the original space, in order to compute
the embedding of the query object.

FastMap, MetricMap, SparseMap, Bourgain embeddings,
and the original formulation of BoostMap, usually provide
approximations of an original distance measure, that lead to
more efficient distance computations but less accuracy. Us-
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Figure 9: Comparison of feature-space versus parameter-space embeddings, with respect to ENN-k ranks. We plot

ENN-k ranks vs. percentile, for 256-dimensional embeddings, for k = 1, 10, 100. On the left we show query-insensitive

embeddings, on the right we show query-sensitive embeddings. Feature-space embeddings give somewhat better results

for ENN-k ranks.
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Figure 10: Comparison of feature-space versus parameter-space embeddings, with respect to k-nn classification error

rate. We plot k-nn error rate versus k. On the left we show query-insensitive embeddings, on the right we show

query-sensitive embeddings. Parameter-space embeddings give lower error rates.
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Figure 11: Comparison of k-nn error rates using orig-

inal distance measure, and using a 256-dimensional

parameter-space query-sensitive embedding. We plot k-

nn error rate vs. k.

chamfer distance BoostMap-Pa-Se-QS
1-nn 0.0547 0.0535
Best k-nn 0.0463 (k = 5) 0.0468 (k = 5)

Table 3: Comparison of k-nn error rates using orig-

inal distance measure, and using a 256-dimensional

parameter-space query-sensitive embedding. We show

the error rates for 1-nn, and for the value of k that

achieved the lowest k-nn error rate (the best k equals

5 in both cases).

ing parameter-space BoostMap embeddings it is possible in
some domains to obtain both faster distance measures and
higher classification accuracy. For the MNIST database and
using the chamfer distance, we get a Euclidean approxima-
tion of the chamfer distance that achieves similar accuracy.
It will be interesting to see if we get similar results in other
domains.

12. DISCUSSION
The experimental results reported in this paper provide a

thorough evaluation of different BoostMap variants on the
MNIST dataset using the chamfer distance as the underlying
distance measure. However, experiments with more datasets
and comparisons with more existing methods are needed in
order to have a clear picture of the relative advantages and
disadvantages of BoostMap.

The main disadvantage of BoostMap is the running time
of the training algorithm. At the same time, in [2] and in
this paper we have successfully completed the training for
large datasets and with computationally expensive distance
measures, so we expect BoostMap to be applicable in a wide
range of domains. Furthermore, in many applications, the
training time can be an acceptable cost as long as it leads to
a higher-quality embedding, and significantly faster nearest
neighbor retrieval and k-nn classification.

The main advantage of BoostMap is that it is formu-
lated as a classifier-combination problem, so that we can
take advantage of powerful machine learning techniques to
construct a highly accurate embedding from many simple,
1D embeddings. Our problem definition, that treats em-
beddings as classifiers, leads to an embedding construction
method that can be applied in any space, metric or non-
metric, without assuming any property of the space, except
for expecting 1D embeddings to behave as weak classifiers.
In contrast, FastMap makes strong Euclidean assumptions
that, in our experiments, are useful only for low-dimensional
embeddings. Bourgain embeddings make weaker assump-
tions, but they still assume that the underlying space is
metric.

The machine-learning formulation also allows us to de-
fine query-sensitive embeddings and parameter-space em-
beddings, which are shown in the experiments to improve
overall embedding quality for both nearest neighbor retrieval
and nearest-neighbor classification accuracy. There are no
obvious modifications to FastMap, Bourgain embeddings,
and other related methods, that could yield query-sensitive
or parameter-space embeddings. Posing embedding con-
struction as minimization of a well-defined classification er-
ror provides us with great flexibility in deciding exactly what
we want to optimize for, and how to achieve that optimiza-
tion.
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